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Abstract By using 25 primer combinations, 563 AFLP
markers segregating in a recombinant inbred popula-
tion (103 lines, Fy) derived from 1.94/Vada were gener-
ated. The 38 AFLP markers in common to the existing
AFLP/RFLP combined Proctor/Nudinka map, one
STS marker, and four phenotypic markers with known
map positions, were used to assign present AFLP link-
age groups to barley chromosomes. The constructed
high-density molecular map contains 561 AFLP
markers, three morphological markers, one disease
resistance gene and one STS marker, and covers a
1062-cM genetic distance, corresponding to an average
of one marker per 1.9 cM. However, extremely uneven
distributions of AFLP markers and strong clustering of
markers around the centromere were identified in the
present AFLP map. Around the centromeric region,
289 markers cover a genetic distance of 155 cM, corres-
ponding to one marker per 0.5 cM; on the distal parts,
906 cM were covered by 277 markers, corresponding to
one marker per 3.3 cM. Three gaps larger than 20 cM
still exist on chromosomes 1, 3 and 5. A skeletal map
with a uniform distribution of markers can be extracted
from the high-density map, and can be applied to detect
and map loci underlying quantitative traits. However,
the application of this map is restricted to barley
species since hardly any marker in common to a closely
related Triticum species could be identified.
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Introduction

In barley (Hordeum vulgare L.), restriction fragment
length polymorphism (RFLP) has been extensively
used for the construction of genetic linkage maps
(Kleinhofs et al. 1988; Shin et al. 1990; Graner et al.
1991; Heun et al. 1991; Kleinhofs et al. 1993 b; Kasha
and Kleinhofs 1994). These have enabled the mapping
of important agronomic qualitative and quantitative
traits, including the ym4 virus resistance gene (Graner
and Bauer 1993), the denso dwarfing genes (Laurie et al.
1993), the liguleless gene (Pratchett and Laurie 1994),
a photoperiod-response gene (Laurie et al. 1994), and
the quantitative loci for yield, malting quality and dis-
ease resistance (Hayes et al. 1994; Han et al. 1995; Kjr
et al. 1995; Thomas et al. 1995, 1996). A limitation of
the application of RFLPs is the labour and time-con-
suming technology of Southern hybridisation that has
to be repeated for each RFLP marker. Moreover, due
to a large genome size (1C = 5.1 x 10° bp) (Bennett and
Leitch 1995) and relatively lower variation within the
barley species, the progress in map construction by
RFLP is slow and expensive. Recently, AFLP markers
have been developed and their power as genetic
markers has been demonstrated (Zabeau and Vos 1993;
Vos et al. 1995). A great advantage of the AFLP tech-
nique is the simultaneous identification of a large num-
ber of marker loci. Moreover, fragments amplified with
the same primer combinations and with the same mo-
bility in gels are most likely homologous and hence
locus specific (Qi and Lindhout 1997). Becker et al.
(1995) has added 116 AFLP markers to the already
existing Proctor/Nudinka RFLP map (Heun et al
1991). Recently, Waugh etal. (1997) increased the
marker density in three barley genetic maps by adding
234, 194 and 376 AFLP markers, respectively.

In a project for mapping QTLs for partial resistance
to barley leaf rust, we applied the AFLP technique to
generate molecular markers. To assign AFLP linkage
groups to barley chromosomes, AFLP markers



common to two mapping populations, Nudinka/Proc-
tor and L94/Vada, were identified and subsequently
a high-density molecular map was constructed using
103 RILs (Fo) derived from the cross L94 x Vada.

Materials and methods

Plant materials

A population of 103 Fy recombinant inbred lines (RILs) was ob-
tained from a cross of L94 x Vada by single-seed descent and used as
a mapping population. L94 is a line from an Ethiopian landrace,
with black and covered seeds; it is extremely susceptible to leaf rust
(Puccinia hordei). Vada is an obsolete commercial cultivar, with
white and naked seeds, bred by the Department of Plant Breeding,
Wageningen Agricultural University, and has a high level of partial
resistance to P. hordei (Niks 1982).

The AFLP protocol

The same AFLP procedure as described by Qi and Lindhout (1997)
was used in the present study. Restriction enzymes, adapters and
primers were as described in Becker et al. (1995) and Qi and Lind-
hout (1997). In total, the following 25 primer combinations were
employed: E37M32, E37M33, E37M38, E40M32, E40M38,
E40M40, E41M32, E41M40, E42M 32, E42M40, E32M61, E33M 54,
E33MS55, E33M58, E33M61, E35M48, E35M 54, E35M55, E35M61,
E38M54, E38MS55, E39M61, E42M48, E42M51, and E45M55. The
first ten primer combinations have been used before to generate AFLP
markers for the construction of the Proctor/Nudinka map (Becker et al.
1995), and the other 15 primer combinations were the most informative
ones as indicated in the previous study of Qi and Lindhout (1997).

Data analysis and map construction

Segregating markers in the mapping population were designated
according to the AFLP profiles of the parent lines (see GrainGenes
WWW page, map data; Qi and Lindhout 1997). Clearly visible
markers were scored as dominant. Three morphological markers mn
(naked seeds), mB (black seeds) and mPau (purple auricle), and one
disease resistance gene dml-o (resistance to Erysiphe graminis), were
also scored as qualitative traits. The primer pair KV1 and KV9
derived from the sequence of the Hor2 gene was used as an STS
marker for the Hor2 locus (for sequences, see Kanazin et al. 1993).
The amplified products were digested by Haelll to reveal polymor-
phism. Missing data for any marker were very limited in the present
study (< 2%).

A software package, JoinMap 2.0 (Stam 1993; Stam and Van Ooijen
1996) was used for linkage grouping and map construction. Linkage
groups were assigned to the corresponding barley chromosomes by
using the locus-specific AFLP markers, that had already been
mapped on the Proctor/Nudinka map (Becker et al. 1995), morpho-
logical markers, and the Hor2 gene. Kosambi’s mapping function
was applied for map-distance calculation (Kosambi 1944).

Results
Data scoring

By using 25 primer combinations, 563 easily scored
AFLP markers were identified, corresponding to an
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Fig. 1 Frequency distribution of the L94 alleles on chromosome
6 (6H). The fitness test was according to a 1:1 ratio which was
approximated in the Fy RILs population

average of 23 markers per primer combination, ranging
from 11 (E40M40) to 33 (E33M61). The number of
usable segregating markers was slightly less than ob-
served in a previous study (Qi and Lindhout 1997). This
was due to poor separation of amplification products of
nearly identical size.

Among 568 markers, 286 were 1.94-specific and 281
were Vada-specific; and one STS marker showed co-
dominance. The majority of the markers (92%) showed
a 1:1 segregation ratio for the two parental alleles
(P <0.05), as was expected for the Fo recombinant
inbred population. Among the 48 markers with dis-
torted segregation, only three were skewed towards
L94 alleles and 45 towards Vada alleles; the latter all
mapped on chromosome 6 (Fig. 1).

For mapping, groups of markers with identical segre-
gation were regarded as a single marker; the marker
with the fewest missing values was chosen as the repre-
sentative one for this group. In total, 433 markers, of
which 61 co-segregated with at least one other marker
and 372 of which showed unique segregation, were
applied for the construction of linkage groups (Fig. 2).

Map construction

By using ten primer combinations, 38 AFLP markers
were identified in our L94/Vada mapping population
that were identical in the Proctor/Nudinka population
(Becker et al. 1995). Markers in common tightly linked
in a single linkage group in our L.94/Vada population
also showed linkage in the Proctor/Nudinka popula-
tion. Similar genetic distances and identical
orders of the markers shared by the two mapping
populations strongly indicated that these AFLP
markers are locus specific and hence their map posi-
tions can be used as anchor points across populations
(Table 1).

The 563 AFLP markers, four phenotypic markers,
and one STS marker, were split into 21 groups at
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Fig. 2 The barley L94/Vada A Chromosome 1 (7H) B Chromosome 2 (2H)
AFLP map. A-G correspond to

barley chromosomes 1 to 7, Distance Marker Distance Marker
with the short arm at the top. (cM) Name (cM) Name
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Fig. 2 See page 378 for legend C Chromosome 3 (3H) D Chromosome 4 (4H)
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Fig. 2 See
s page 378 for legend E Chromosome 5 (1H) F Chromosome 6 (6H)
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a LOD threshold grouping value of 7.0. Only two
markers, E33M55-191 with 37 missing data and
E33M54-310, were not linked to any other marker at
a LOD value of 5.0, and one group of three markers
remained separated at a LOD threshold value lower
than 3.0. The 38 AFLP markers in common, as well as
four phenotypic markers (mn, mPau, mB, & dml-o0) and
Hor2, were used to assign AFLP linkage groups to
seven barley chromosomes. Except for the five isolated
markers described above, the other 18 groups con-
tained at least one anchor marker and were assigned to
the seven barley chromosomes. Chromosomes 1, 2 and
4 were composed of two groups, chromosomes 3, 5,
6 and 7 of three groups. The unassigned group contain-
ing three AFLP markers was assigned to chromosome
5 because it showed the tightest linkage (LOD = 2.6 for
mB and E42M48-335) to the other markers on this
chromosome and fitted very well on the map of this
chromosome.

The resulting map contains 566 markers covering
a total map distance of 1062 cM corresponding to
approximately 1.9 cM per marker. Chromosome 2 has
the largest number of markers (120) with the longest
genetic distance (189 cM), and chromosome 4 is the
shortest one. Remarkably, marker clustering was ob-
served on all seven chromosomes (Fig. 2 and Table 2).
Using the Proctor/Nudinka AFLP and RFLP com-
bined map (Becker et al. 1995) as a bridge, the present
AFLP map was compared with the integrated RFLP
map (Qi et al. 1996) which was based on four indepen-
dent RFLP maps (Graner et al. 1991; Heun et al. 1991;
Kleinhofs et al. 1993 b; Kasha and Kleinhofs 1994) with
known centromere regions (Kleinhofs et al. 1993 a). The
clusters of AFLP markers on the present map were
very likely also located around centromeric regions. In
the putative centromeric regions, jointly spanning
155¢cM, 289 markers were mapped, corresponding to
0.5 cM per marker. In contrast, the chromosome arms,
spanning 906 cM, were covered by 277 markers, corres-
ponding to 3.3 cM per marker. Despite this small
average genetic distance between markers, chromo-
somes 1, 3 and 5 still contain a gap larger than 20 cM.
Several smaller gaps (10-15cM) are present on the
distal parts of the chromosomes (Fig. 2).

There are no clear indications of uncovered regions
on the distal parts of each chromosome though some
chromosomes were quite short, such as chromosome
7 in the present map (161 cM) compared to the integ-
rated map (195 cM). Conversely, there are also no clear
indications of having covered extra distal parts by the
AFLP markers, as compared to the integrated RFLP
map (with a 1060-cM total length and 880 markers,
Qi et al. 1996).

Fig.2 See page 378 for legend
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Table 1 Genetic distances (cM) of tightly
pairs/groups in two mapping populations®

linked marker

Marker pairs/groups 194/ Proctor/
Vada Nudinka
E42M32-231/E37M32-555 12.3 16.8 (1)?
E41M32-156/E41M40-110 12.8 255(2)
E42M32-272/E37M38-373 0.5 1.0 (2)
E37M38-199/E37M33-501/E37M32-325 10.6/49  13.5/7.2 (2)
E41M40-155/E40M32-180/E40M32-130 0.5/15.7 2.1/18.8 (4)
E41M40-270/E40M40-358/E40M38-338  2.5/10.0  3.5/8.2(7)

*As an example, only six pairs and groups are represented in this
table

> Numbers in parentheses indicated the chromosomes to which these
markers were assigned on the Proctor/Nudinka map

In conclusion, despite the non-uniform distribution
of markers along chromosomes and the presence of
three gaps of more than 20 cM, the present AFLP map
most likely covers the entire barley genome, or nearly
so. From this high-density map a skeletal map with
a fairly uniform distribution of markers can be extrac-
ted. Such a skeletal map may serve for the detection
and mapping of loci underlying qualitative and quant-
itative traits.

Discussion
Reliability of the map

Genetic maps are calculated from the recombination
rates between loci as a result of chromosome crossovers
at meiosis. Recombination rates may be influenced by
environmental factors (Allard 1963; Powell and Nilan
1963); hence genetic distances may vary from one map-
ping population to another. But, in general, recombina-
tion rates are under genetic control (Paredes and Gepts
1995) and heavily depend on chromosome structure.
Comparison of four independent barley RFLP maps
indicated that barley genetic linkage maps are quite

Table 2 Summary of L94/Vada

stable; marker orders are similar and no obvious re-
arrangements are detectable (Qi et al. 1996). Compari-
son of the present map with the Proctor/Nudinka map
indicated that the orders of all anchor markers (Fig. 2,
markers with italic bold font) on the seven chromo-
somes were identical and the distances between tightly
linked markers were very similar indeed. Moreover, the
positions of four phenotypic markers and Hor2 were
also mapped to their correct positions on the barley
genome (Franckowiak 1995; Forster 1996; Jensen 1996;
Qi et al. 1996).

Non-systematic changes of marker-allele frequencies
along a map are indicative of uncertainties in the order
of markers. We did not observe any irregular pattern of
segregation distortion in our data (Fig. 1). Altogether,
our results indicate that we produced a reliable high-
density marker map of the barley genome.

Clustering of markers

A high degree of clustering of markers around the
centromere is a notable feature in wheat (Chao et al.
1989; Devos et al. 1992; Hart 1994). The clustering of
markers at centromeric, and possibly telomeric, areas
was found in the tomato high-density map by Tanksley
et al. (1992). Clustering of markers at centromeric re-
gions was also observed on the barley integrated map
(Qi et al. 1996). Extreme non-uniform distributions of
AFLP markers and strong clustering of markers
around the putative centromere were identified in the
present AFLP map (Fig. 2 and Table 2). The cen-
tromeric suppression of recombination may be the
main reason for the clustering of markers (Tanksley
et al. 1992; Frary et al. 1996). Surprisingly, clustering is
much more pronounced in the present AFLP map than
in the RFLP maps. This may be due to differences in
the sensitivities of RFLP versus AFLP markers. The
AFLP technique is extremely sensitive to polymor-
phism in the genome, as 1-bp length differences in
relatively short DNA fragments (50-1000 bp) are al-
ready detectable. In species with a large genome, such

mapping data Chromosomes No. of Length No. of Chromosome arms  Centromeric clusters
markers (cM) gaps®
No. of Coverage No. of Coverage
markers (cM) markers  (cM)
1 (7H) 96 159 1 33 128 (3.9)° 63 31 (0.5)°
2 (2H) 120 189 0 59 156 (2.6) 61 33 (0.5)
3 (3H) 77 164 1 38 147 (3.9) 39 17 (0.4)
4 (4H) 61 116 0 30 97 (3.2) 31 19 (0.6)
5 (1H) 60 136 1 29 118 (4.1) 31 18 (0.6)
6 (6H) 77 137 0 42 119 (2.8) 35 18 (0.5)
7 (5H) 75 161 0 46 140 (3.0) 29 21 (0.7)
Total 566 1062 3 277 906 (3.3) 289 156 (0.5)

*A gap is a distance between two adjacent markers of more than 20 cM
®Numbers in parentheses are the average distances per marker interval



as barley, a great portion of repetitive sequences occur
in the centromeric regions. Small variations such as
1-bp deletion/insertion in repetitive sequences, and/or
variable numbers of short sequence repeats (or simple-
sequence length polymorphisms, SSPLs), can be de-
tected by the AFLP technique. However, they will
probably not be revealed by Southern hybridization
with DNA probes, as the repetitive sequences will usu-
ally give multiple signals, and multi-copy probes are
generally excluded in RFLP map construction. As the
amplification products generated by the AFLP tech-
nique may contain repeated sequences, there is a higher
chance to identify AFLP markers than RFLPs in high-
ly repetitive regions near the centromere. This may be
the most plausible explanation for the stronger cluster-
ing of AFLP markers.

Locus specificity

If AFLP products show the same mobility in gels, these
are very likely to be homologous and locus specific (Qi
and Lindhout 1997). This assumption can be verified
by comparing the sequences of co-migrating bands and
by genetic linkage analyses, respectively. Roupe van der
Voort et al. (1997) sequenced co-migrating amplifica-
tion products in potato and showed that this assump-
tion is nearly always valid. Waugh et al. (1997) found
that 81 co-migrating AFLP markers, segregating in
more than one population, mapped to similar loci on
the three barley genetic maps and only three markers
mapped to different positions. In the present study, all
38 co-migrating bands, segregating in two populations,
mapped to the same loci. Altogether, these studies
indicate the great probability of the locus specificity of
AFLP markers.

To investigate whether less-related populations or
species may also show markers in common, the AFLP
patterns of barley (H. vulgare) were compared with
those of three Triticum species (data not shown). The
lack of co-migrating AFLP products suggests that the
genetic distance between these species is too large for
markers in common to be identified. Consequently, the
use of the locus-specific AFLP markers is limited to
populations within species or to very closely related
species.
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